\(\int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))}{(a+a \sin (e+f x))^2} \, dx\) [274]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 85 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))}{(a+a \sin (e+f x))^2} \, dx=\frac {B d x}{a^2}-\frac {(A c+2 B c+2 A d-5 B d) \cos (e+f x)}{3 a^2 f (1+\sin (e+f x))}-\frac {(A-B) (c-d) \cos (e+f x)}{3 f (a+a \sin (e+f x))^2} \]

[Out]

B*d*x/a^2-1/3*(A*c+2*A*d+2*B*c-5*B*d)*cos(f*x+e)/a^2/f/(1+sin(f*x+e))-1/3*(A-B)*(c-d)*cos(f*x+e)/f/(a+a*sin(f*
x+e))^2

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {3047, 3098, 2814, 2727} \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))}{(a+a \sin (e+f x))^2} \, dx=-\frac {(A c+2 A d+2 B c-5 B d) \cos (e+f x)}{3 a^2 f (\sin (e+f x)+1)}+\frac {B d x}{a^2}-\frac {(A-B) (c-d) \cos (e+f x)}{3 f (a \sin (e+f x)+a)^2} \]

[In]

Int[((A + B*Sin[e + f*x])*(c + d*Sin[e + f*x]))/(a + a*Sin[e + f*x])^2,x]

[Out]

(B*d*x)/a^2 - ((A*c + 2*B*c + 2*A*d - 5*B*d)*Cos[e + f*x])/(3*a^2*f*(1 + Sin[e + f*x])) - ((A - B)*(c - d)*Cos
[e + f*x])/(3*f*(a + a*Sin[e + f*x])^2)

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3098

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_
.)*(x_)]^2), x_Symbol] :> Simp[(A*b - a*B + b*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + D
ist[1/(a^2*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b*B - a*C) + b*C*(2*m + 1)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {A c+(B c+A d) \sin (e+f x)+B d \sin ^2(e+f x)}{(a+a \sin (e+f x))^2} \, dx \\ & = -\frac {(A-B) (c-d) \cos (e+f x)}{3 f (a+a \sin (e+f x))^2}-\frac {\int \frac {-a (2 B (c-d)+A (c+2 d))-3 a B d \sin (e+f x)}{a+a \sin (e+f x)} \, dx}{3 a^2} \\ & = \frac {B d x}{a^2}-\frac {(A-B) (c-d) \cos (e+f x)}{3 f (a+a \sin (e+f x))^2}+\frac {(A c+2 B c+2 A d-5 B d) \int \frac {1}{a+a \sin (e+f x)} \, dx}{3 a} \\ & = \frac {B d x}{a^2}-\frac {(A-B) (c-d) \cos (e+f x)}{3 f (a+a \sin (e+f x))^2}-\frac {(A c+2 B c+2 A d-5 B d) \cos (e+f x)}{3 f \left (a^2+a^2 \sin (e+f x)\right )} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(180\) vs. \(2(85)=170\).

Time = 1.40 (sec) , antiderivative size = 180, normalized size of antiderivative = 2.12 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))}{(a+a \sin (e+f x))^2} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (2 (A-B) (c-d) \sin \left (\frac {1}{2} (e+f x)\right )-(A-B) (c-d) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+2 (A c+2 B c+2 A d-5 B d) \sin \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2+3 B d (e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3\right )}{3 a^2 f (1+\sin (e+f x))^2} \]

[In]

Integrate[((A + B*Sin[e + f*x])*(c + d*Sin[e + f*x]))/(a + a*Sin[e + f*x])^2,x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(2*(A - B)*(c - d)*Sin[(e + f*x)/2] - (A - B)*(c - d)*(Cos[(e + f*x)/2]
 + Sin[(e + f*x)/2]) + 2*(A*c + 2*B*c + 2*A*d - 5*B*d)*Sin[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^
2 + 3*B*d*(e + f*x)*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3))/(3*a^2*f*(1 + Sin[e + f*x])^2)

Maple [A] (verified)

Time = 0.58 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.29

method result size
derivativedivides \(\frac {-\frac {2 \left (A c -d B \right )}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}-\frac {-2 A c +2 d A +2 B c -2 d B}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}-\frac {2 \left (2 A c -2 d A -2 B c +2 d B \right )}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}+2 d B \arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a^{2} f}\) \(110\)
default \(\frac {-\frac {2 \left (A c -d B \right )}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}-\frac {-2 A c +2 d A +2 B c -2 d B}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}-\frac {2 \left (2 A c -2 d A -2 B c +2 d B \right )}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}+2 d B \arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a^{2} f}\) \(110\)
parallelrisch \(\frac {3 B x \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right ) d f +\left (\left (9 f x +6\right ) d B -6 A c \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+\left (\left (9 d f x -6 c +18 d \right ) B -6 A \left (c +d \right )\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )+\left (3 d f x -2 c +8 d \right ) B -4 \left (c +\frac {d}{2}\right ) A}{3 f \,a^{2} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}\) \(119\)
risch \(\frac {B d x}{a^{2}}-\frac {2 \left (-A c -2 d A +3 i A c \,{\mathrm e}^{i \left (f x +e \right )}+3 i d \,{\mathrm e}^{i \left (f x +e \right )} A -2 B c +5 d B +3 i B c \,{\mathrm e}^{i \left (f x +e \right )}-9 i B d \,{\mathrm e}^{i \left (f x +e \right )}+3 A d \,{\mathrm e}^{2 i \left (f x +e \right )}+3 B c \,{\mathrm e}^{2 i \left (f x +e \right )}-6 B d \,{\mathrm e}^{2 i \left (f x +e \right )}\right )}{3 f \,a^{2} \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )^{3}}\) \(143\)
norman \(\frac {\frac {x d B}{a}+\frac {x d B \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}-\frac {4 A c +2 d A +2 B c -8 d B}{3 a f}-\frac {\left (2 A c -2 d B \right ) \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {\left (16 A c +2 d A +2 B c -20 d B \right ) \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 a f}-\frac {\left (14 A c +4 d A +4 B c -22 d B \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 a f}-\frac {\left (4 A c +4 d A +4 B c -12 d B \right ) \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {\left (2 A c +2 d A +2 B c -6 d B \right ) \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {\left (2 A c +2 d A +2 B c -6 d B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{a f}+\frac {3 x d B \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{a}+\frac {5 x d B \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}+\frac {7 x d B \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}+\frac {7 x d B \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}+\frac {5 x d B \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}+\frac {3 x d B \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{2} a \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}\) \(402\)

[In]

int((A+B*sin(f*x+e))*(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^2,x,method=_RETURNVERBOSE)

[Out]

2/f/a^2*(-(A*c-B*d)/(tan(1/2*f*x+1/2*e)+1)-1/2*(-2*A*c+2*A*d+2*B*c-2*B*d)/(tan(1/2*f*x+1/2*e)+1)^2-1/3*(2*A*c-
2*A*d-2*B*c+2*B*d)/(tan(1/2*f*x+1/2*e)+1)^3+d*B*arctan(tan(1/2*f*x+1/2*e)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 208 vs. \(2 (81) = 162\).

Time = 0.27 (sec) , antiderivative size = 208, normalized size of antiderivative = 2.45 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))}{(a+a \sin (e+f x))^2} \, dx=-\frac {6 \, B d f x - {\left (3 \, B d f x + {\left (A + 2 \, B\right )} c + {\left (2 \, A - 5 \, B\right )} d\right )} \cos \left (f x + e\right )^{2} - {\left (A - B\right )} c + {\left (A - B\right )} d + {\left (3 \, B d f x - {\left (2 \, A + B\right )} c - {\left (A - 4 \, B\right )} d\right )} \cos \left (f x + e\right ) + {\left (6 \, B d f x + {\left (A - B\right )} c - {\left (A - B\right )} d + {\left (3 \, B d f x - {\left (A + 2 \, B\right )} c - {\left (2 \, A - 5 \, B\right )} d\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{3 \, {\left (a^{2} f \cos \left (f x + e\right )^{2} - a^{2} f \cos \left (f x + e\right ) - 2 \, a^{2} f - {\left (a^{2} f \cos \left (f x + e\right ) + 2 \, a^{2} f\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

-1/3*(6*B*d*f*x - (3*B*d*f*x + (A + 2*B)*c + (2*A - 5*B)*d)*cos(f*x + e)^2 - (A - B)*c + (A - B)*d + (3*B*d*f*
x - (2*A + B)*c - (A - 4*B)*d)*cos(f*x + e) + (6*B*d*f*x + (A - B)*c - (A - B)*d + (3*B*d*f*x - (A + 2*B)*c -
(2*A - 5*B)*d)*cos(f*x + e))*sin(f*x + e))/(a^2*f*cos(f*x + e)^2 - a^2*f*cos(f*x + e) - 2*a^2*f - (a^2*f*cos(f
*x + e) + 2*a^2*f)*sin(f*x + e))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1062 vs. \(2 (83) = 166\).

Time = 2.11 (sec) , antiderivative size = 1062, normalized size of antiderivative = 12.49 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))}{(a+a \sin (e+f x))^2} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))/(a+a*sin(f*x+e))**2,x)

[Out]

Piecewise((-6*A*c*tan(e/2 + f*x/2)**2/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2 + f*x/2)**2 + 9*a**2*f*
tan(e/2 + f*x/2) + 3*a**2*f) - 6*A*c*tan(e/2 + f*x/2)/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2 + f*x/2
)**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) - 4*A*c/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2 + f*x/2)
**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) - 6*A*d*tan(e/2 + f*x/2)/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*
tan(e/2 + f*x/2)**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) - 2*A*d/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*t
an(e/2 + f*x/2)**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) - 6*B*c*tan(e/2 + f*x/2)/(3*a**2*f*tan(e/2 + f*x/2)
**3 + 9*a**2*f*tan(e/2 + f*x/2)**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) - 2*B*c/(3*a**2*f*tan(e/2 + f*x/2)*
*3 + 9*a**2*f*tan(e/2 + f*x/2)**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) + 3*B*d*f*x*tan(e/2 + f*x/2)**3/(3*a
**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2 + f*x/2)**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) + 9*B*d*f*x*t
an(e/2 + f*x/2)**2/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2 + f*x/2)**2 + 9*a**2*f*tan(e/2 + f*x/2) +
3*a**2*f) + 9*B*d*f*x*tan(e/2 + f*x/2)/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2 + f*x/2)**2 + 9*a**2*f
*tan(e/2 + f*x/2) + 3*a**2*f) + 3*B*d*f*x/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2 + f*x/2)**2 + 9*a**
2*f*tan(e/2 + f*x/2) + 3*a**2*f) + 6*B*d*tan(e/2 + f*x/2)**2/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2
+ f*x/2)**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) + 18*B*d*tan(e/2 + f*x/2)/(3*a**2*f*tan(e/2 + f*x/2)**3 +
9*a**2*f*tan(e/2 + f*x/2)**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) + 8*B*d/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9
*a**2*f*tan(e/2 + f*x/2)**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f), Ne(f, 0)), (x*(A + B*sin(e))*(c + d*sin(e
))/(a*sin(e) + a)**2, True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 454 vs. \(2 (81) = 162\).

Time = 0.31 (sec) , antiderivative size = 454, normalized size of antiderivative = 5.34 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))}{(a+a \sin (e+f x))^2} \, dx=\frac {2 \, {\left (B d {\left (\frac {\frac {9 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 4}{a^{2} + \frac {3 \, a^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}} + \frac {3 \, \arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a^{2}}\right )} - \frac {A c {\left (\frac {3 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 2\right )}}{a^{2} + \frac {3 \, a^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}} - \frac {B c {\left (\frac {3 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right )}}{a^{2} + \frac {3 \, a^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}} - \frac {A d {\left (\frac {3 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right )}}{a^{2} + \frac {3 \, a^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}}\right )}}{3 \, f} \]

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

2/3*(B*d*((9*sin(f*x + e)/(cos(f*x + e) + 1) + 3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 4)/(a^2 + 3*a^2*sin(f*x
 + e)/(cos(f*x + e) + 1) + 3*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3
) + 3*arctan(sin(f*x + e)/(cos(f*x + e) + 1))/a^2) - A*c*(3*sin(f*x + e)/(cos(f*x + e) + 1) + 3*sin(f*x + e)^2
/(cos(f*x + e) + 1)^2 + 2)/(a^2 + 3*a^2*sin(f*x + e)/(cos(f*x + e) + 1) + 3*a^2*sin(f*x + e)^2/(cos(f*x + e) +
 1)^2 + a^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3) - B*c*(3*sin(f*x + e)/(cos(f*x + e) + 1) + 1)/(a^2 + 3*a^2*si
n(f*x + e)/(cos(f*x + e) + 1) + 3*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a^2*sin(f*x + e)^3/(cos(f*x + e) +
 1)^3) - A*d*(3*sin(f*x + e)/(cos(f*x + e) + 1) + 1)/(a^2 + 3*a^2*sin(f*x + e)/(cos(f*x + e) + 1) + 3*a^2*sin(
f*x + e)^2/(cos(f*x + e) + 1)^2 + a^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3))/f

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.56 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))}{(a+a \sin (e+f x))^2} \, dx=\frac {\frac {3 \, {\left (f x + e\right )} B d}{a^{2}} - \frac {2 \, {\left (3 \, A c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 3 \, B d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 3 \, A c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 3 \, B c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 3 \, A d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 9 \, B d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 2 \, A c + B c + A d - 4 \, B d\right )}}{a^{2} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}}{3 \, f} \]

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^2,x, algorithm="giac")

[Out]

1/3*(3*(f*x + e)*B*d/a^2 - 2*(3*A*c*tan(1/2*f*x + 1/2*e)^2 - 3*B*d*tan(1/2*f*x + 1/2*e)^2 + 3*A*c*tan(1/2*f*x
+ 1/2*e) + 3*B*c*tan(1/2*f*x + 1/2*e) + 3*A*d*tan(1/2*f*x + 1/2*e) - 9*B*d*tan(1/2*f*x + 1/2*e) + 2*A*c + B*c
+ A*d - 4*B*d)/(a^2*(tan(1/2*f*x + 1/2*e) + 1)^3))/f

Mupad [B] (verification not implemented)

Time = 14.08 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.11 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))}{(a+a \sin (e+f x))^2} \, dx=\frac {B\,d\,x}{a^2}-\frac {\left (2\,A\,c-2\,B\,d\right )\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+\left (2\,A\,c+2\,A\,d+2\,B\,c-6\,B\,d\right )\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+\frac {4\,A\,c}{3}+\frac {2\,A\,d}{3}+\frac {2\,B\,c}{3}-\frac {8\,B\,d}{3}}{a^2\,f\,{\left (\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+1\right )}^3} \]

[In]

int(((A + B*sin(e + f*x))*(c + d*sin(e + f*x)))/(a + a*sin(e + f*x))^2,x)

[Out]

(B*d*x)/a^2 - ((4*A*c)/3 + (2*A*d)/3 + (2*B*c)/3 - (8*B*d)/3 + tan(e/2 + (f*x)/2)*(2*A*c + 2*A*d + 2*B*c - 6*B
*d) + tan(e/2 + (f*x)/2)^2*(2*A*c - 2*B*d))/(a^2*f*(tan(e/2 + (f*x)/2) + 1)^3)